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Abstract 
Material variations on an  atomic  scale  enable  the  quantum mechanical functionality  of  devices 
such as resonant  tunneling  diodes (RTDs), quantum  well  infrared  photodetectors  (QWIPs), 
quantum well lasers,  and  heterostructure  field  effect  transistors  (HFETs).  The  design  and 
optimization of such  heterostructure  devices  requires  a  detailed  understanding of  quantum 
mechanical electron transport. The  Nanoelectronic  Modeling Tool (NEMO) is a  general-purpose 
quantum  device  design and analysis tool that addresses this problem. NEMO  was  combined with 
a  parallelized  genetic  algorithm  package  (PGAPACK)  to  optimize  structural  and  material 
parameters.  The  electron  transport  simulations  presented  here  are  based  on  a  full  band 
simulation,  including  effects of non-parabolic bands in  the longitudinal and transverse  directions 
relative  to  the  electron  transport  and  Hartree  charge  self-consistency.  The  first,  result  of  the 
genetic  algorithm  driven  quantum  transport calculation with convergence  of  a random structure 
population to experimental data is presented. 

Introduction 
The  NASA/JPL  goal to reduce payload in future  space  missions  while  increasing  mission 

capability  demands  miniaturization of measurement,  analytical  and  communication  systems. 
Currently,  typical  system  requirements  include  the  detection  of  particular  spectral  lines, 
associated  data processing, and communication of  the acquired data  to other subsystems. While 
silicon  device  technology  dominates  the  commercial  microprocessor  and  memory  market, 
semiconductor heterostructure devices maintain their niche for light detection, light emission, and 
high-speed data  transmission.  The production of  these  heterostructure  devices is enabled by the 
advancement of material  growth  techniques, which opened up a  vast  design  space. The full 
experimental exploration of this design space is unfeasible and a reliable design tool is needed. 

Military  applications  have  similar  system  requirements  to  those  listed  above.  Such 
requirements  prompted  a  device  modeling project at the  Central  Research  Laboratory  of  Texas 
Instruments  (which  transferred  to  Raytheon  Systems in 
1997).  NEMO  was developed as  a general-purpose quantum 
mechanics-based l-D device  design  and  analysis tool from 
1993-97.  The tool is available  to US researchers by request 
on  the  NEMO  web  site'.  NEMO  is  based  on  the non- 
equilibrium  Green  function  approach, which allows a 
fundamentally  sound  inclusion of  the  required  physics: 
bandstructure,  scattering,  and  charge  self-consistency.  The 
theoretical  approach is documented in references [2, 31 while 
some  of  the  major  simulation  results  are  documented in 
references [4-61. This  paper  highlights  the  recent  work on 
genetic algorithm based device parameter optimization. 

Quantum Device Parameter Optimization 
using Genetic Algorithms 

Heterostructure  device designs involve the choice of material 
compositions,  layer  thicknesses,  and  doping  profiles. 
Material  parameters  such  as band offsets,  effective  masses, 
dielectric  constants  etc.  influence  the  device  simulation 
results in addition  to  the structural design parameters. The 
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Figure 1: Architecture of a 
genetic  algorithm-based NEMO 
simulation. 



full exploration of  the  design  space using purely experimental  techniques is unfeasible due  to 
time  and  financial  constraints.  For  example, it takes  a  well-equipped  research  laboratory 
approximately five working days7  for the growth, processing and testing of a  particular  resonant 
tunneling diode design. NEMO can provide q~ant i ta t ive~-~ current  voltage  characteristics (I-V's) 
within minutes  to hours' of CPU time  for  a  single  set  of  device and material parameters. With 
this  quantitative  simulation  capability  the  design  parameter  space  can be explored  expediently 
once an automated system for  the design parameter variation is implemented. This  paper presents 
the  combination  of  NEMO with a  parallelized  genetic  algorithm  package  (PGAPACK)' as 
indicated in Figure 1. The  architecture lends itself  to  the  optimization of any parameters  that 
enter  a NEMO simulation.  To  evaluate how good a particular parameter set is, a  fitness  function 
must be developed as discussed in the next section. 

Simulation Target and Fitness Function 
In  this  work  the  RTD is used as  a vehicle to study the effects of structural and doping  variations 
on the  electron  transport. I-V's of two devices  that  are  part of a  well-behaved  test  matrix of 
experimental  data published in  reference [ 5 ]  are used as a design target.  The raw I-V data  (see 
the  example in Figure 2) contains  a  contact  series  resistance  and  oscillations in the  negative 
differential resistance (NDR). The oscillation in the  NDR is attributed to external circuit effects" 
and  cannot be simulated within NEMO. The step-like feature in the  NDR is cut  out of the raw 
data to  generate  a "clean" set  of experimental data. The  contact  series resistance can be estimated 
from the peak current of a  series of nominally identical devices' with different  cross  sections. 
The voltage drop  over the contact resistance can be subtracted out of the  extrinsic voltage scale  to 
yield the intrinsic voltage scale (see inset of Figure 2a) 
The  fitness  of  the  simulated  data is measured against such  target I-V. There  are  four  particular 
features  that  are explicitly evaluated for each simulated I-V: peak and valley current  and  voltage, 
and  the  slope  close  to  the peak and  the valley (see Figure 2b). Differences between the target and 
the  simulation in these  four  features and the  absolute  and  relative  error  for all simulated  data 
points enter  into  the  fitness function with a weighted average. The target fitness evaluated against 
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Figure  2:  Generation  of  the  target  I-V  characteristic  of  a  typical  resonance  tunneling  diode. (a) The 
extrinsically  measured  I-V  (solid  line)  includes  a  series  resistance  and  oscillations in the  negative 
differential  conductance  region  (0.32V-0.43V).  The  series  resistance  can  be  estimated  from  a  series of 
devices  with  different  cross  sections.  The  intrinsic  I-V  is  the  target  for  the  optimization  (crosses).  (b) 
Features  that  enter  into  the  evaluation of the  fitness  of  simulated  data.  Of  particular  interest  are  the 
peak  and  valley  voltage  and  current  and  the  slopes  close  to  the  peak  and  the  valley. 
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Figure 4: Current voltage characteristics of two  different  InGaAs/InAlAs  resonant  tunneling 
diodes. The nominal structures  have  barrier  (T2)  and well (T3) thicknesses  of 16 monolayers 
(ml), and doping  a  doping profile of lo’* ~311‘~ ( N 1 )  and 10’’ cm-3 (N2). The  devices  (a) and (b) 
differ nominally in their  no-doping spacer thicknesses (TI) of 7 and 20 ml, respectively. The 
solid  lines  show  experimental  data published in reference [ 5 ] ,  where the noise in the valley 
current region was eliminated. The curves are labeled by the 5 parameters Nl-N2-Tl-T2-T3. 

Simulation Results 
Two I-V’s from  slightly  different  structures  serve as a  target  of  the  genetic  algorithm 

optimization. Both structures were specified to  the grower to  have 16 monolayers (ml) of barriers 
(T2) and well (T3), no intentional doping in the central device  (N2=l x l  0’’ ~ m - ~ ) ,  N1=1x1018  cm-’ 
doping  in  the low doping spacers, and 3 ~ 1 0 ’ ~  cm” in the high doping contacts (see  Figure 3). The 
nominally only difference in the  two devices is in the no-doping spacer length TI of 7 vs. 20 ml. 
The  simulation is started from the random populations as described in the previous section.  The 
genetic  algorithm  converges for both I-V’s to  the nominal  structure  values, well within the 
experimental uncertainty as  shown in Figure 4. Again it is found  that  the well widths  must be 
increased in the  simulation by a few monolayers versus the  nominal values to achieve the best 
agreement with experimental data’. Different relative weights will result in different  “optimal“ 
structures as shown in Figure 4b. 

Future Work 
This  work  is  the  first  step  to  integrate  NEMO  within a  high  performance  parallel 

computational  environment.  A desired curve can now be entered as  the  target  of  the  simulation 
and  the  genetic algorithm is expected to obtain the optimal parameter set. Future work will utilize 
this method to analyze  the vast material and  structure parameter space.  It is planned  to  evaluate 
other  optimization  techniques  such as simulated  annealing  and  directive  approaches as well. 
These  optimization  techniques will be made  available within a  graphical  user  interface which 
enables  the selection of parameters to be varied, the  setting  of parameter ranges and  the  setting  of 
optimization parameters, such as population sizes, and mutation and crossover rules. 

Summary 
We present the  first NEMO simulations driven by a genetic algorithm to optimize  parameters 

such  as  layer  thicknesses  and  doping  profiles.  The  convergence of the  initially  random 
population of devices  to  experimental  specified  device  parameters  is  demonstrated  for  two 



itself results in a  value  of 1. Disagreements between simulation and  target result in fitness values 
between 0 and 1 .  

Transport Model 
The  electron  transport simulations are based on  a  single band model, which incorporates3  effects 
of non-parabolic bands in the longitudinal and transverse directions relative to  electron transport. 
The model parameters are derived from a tight binding sp3s* multiband model. This  single band 
model  captures  the relevant transport physics such as complex band wrapping in the  barriers  and 
the  non-parabolicity of  the  conduction band. The  computation  of  the  non-parabolic  single band 
model  executes  about 60 times  faster  than  the  computation of the full band sp3s"  model (for 
structures  considered here). This  dramatic increase in speed  allows  inclusion  of  Hartree  charge 
self-consistency with non-parabolicity in the  transverse  direction.  The  double  integral in total 
energy and  transverse momentum to obtain the  electron density at each site i (Eq.  (1)) is carried 
out  explicitly2 in the inner loop of the  charge  self-consistency.  The  current  density is evaluated 
self-consistently with the electron density in the double integration. 

ni c f  1 kdkj Ki (k,  E)dE ( 1  1 

I c€ j kdkj w ,  E ) ( L   ( E )  - fR(E))dE (2) 

Set-up of Numerical Experiment 
In the numerical experiment described in Figure 3, five parameters (2 doping  concentrations, 

NI ,  N2, and 3 thicknesses, TI, Tz, T3) are varied within the  genetic algorithm in order  to  achieve 
the best fit  to  an experimental I-V curve. The simulation is started from a random population of 
200  parameter  sets.  The  doping  population is logarithmically  distributed  around  the  nominal 
values by factors  of 10 (N1~[1x10'7,1x10'9],  N2~[1x10'4,1x10'6]). The layer thickness population 
is uniformly  distributed  around  the nominal value by 10 monolayers (TI E [ 1,171 for  device 1, 
TI E [10,30] for  device 2, T2,T3e [6,26]). In each  generation 63  of  the worst  genes''  are dropped 
out of the  population  and new genes are generated' from the  rest by mutation  and  crossover. 
Mutation allows the parameters to leave the original parameter range. 

Length 
Figure 3 Conduction band  edge  and  doping  profile of a typical  resonant  tunneling  diode.  The central 
device  region is typically  undoped.  The  low  doped  spacer  thickness, the barrier  thicknesses  and  the 
well  thickness  are  labeled TI, T2, and  T3,  respectively.  The low spacer  doping  and  the  central  device 
doping are labeled N1 and NZ, respectively.  These five parameters  are  varied. 



different  devices.  The  transport  simulation  are performed within  a  novel  non-parabolic  single 
band model which is derived from a more complete sp3s* tight binding model. This  single band 
model captures  the relevant transport physics such as complex band wrapping in the  barriers  and 
the non-parabolicity of the conduction band in the longitudinal and transverse  transport  direction. 
These simulations are performed for the first time in Hartree charge self-consistency. 
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